Concise Communication

Abstract

HIV-1 acquisition occurs most commonly after sexual contact. To establish infection, HIV-1 must infect cells that support high level replication, namely CD4+ T cells, which are absent from the outermost genital epithelium. Dendritic cells (DCs), present in mucosal epithelia, potentially facilitate HIV-1 acquisition. We show that vaginal epithelial DCs, termed CD1a+ VEDCs, are unlike other blood and tissue derived DCs because they express langerin but not DC-SIGN, and unlike skin-based langerin+ DC subset, Langerhans cells (LC), they do not harbor Birbeck granules. Individuals primarily acquire HIV-1 that utilize the CCR5 receptor (termed either R5 or R5X4) during heterosexual transmission, and the mechanism for the block against variants that only use the CXCR4 receptor (classified as X4) remains unclear. We show that X4 as compared to R5 HIV-1 show limited to no replication in CD1a+ VEDCs. This differential replication occurs post-fusion suggesting that receptor usage influences post-entry steps in the virus life-cycle. Furthermore, CD1a+ VEDCs isolated from HIV-1 infected virologically suppressed women harbor HIV-1 DNA. Thus, CD1a+ VEDCs are potentially both infected early during heterosexual transmission and retain virus during treatment. Understanding the interplay between HIV-1 and CD1a+ VEDCs will be important for future prevention and cure strategies.

Authors

Victor Pena-Cruz, Luis M. Agosto, Hisashi Akiyama, Alex Olson, Yvetane Moreau, Jean-Robert Larrieux, Andrew Henderson, Suryaram Gummuluru, Manish Sagar

×

Abstract

Immunotherapy prolongs survival in only a subset of melanoma patients, highlighting the need to better understand the driver tumor microenvironment. We conducted bioinformatic analyses of 703 transcriptomes to probe the immune landscape of primary cutaneous melanomas in a population-ascertained cohort. We identified and validated 6 immunologically distinct subgroups, with the largest having the lowest immune scores and the poorest survival. This poor-prognosis subgroup exhibited expression profiles consistent with β-catenin–mediated failure to recruit CD141+ DCs. A second subgroup displayed an equally bad prognosis when histopathological factors were adjusted for, while 4 others maintained comparable survival profiles. The 6 subgroups were replicated in The Cancer Genome Atlas (TCGA) melanomas, where β-catenin signaling was also associated with low immune scores predominantly related to hypomethylation. The survival benefit of high immune scores was strongest in patients with double-WT tumors for BRAF and NRAS, less strong in BRAF-V600 mutants, and absent in NRAS (codons 12, 13, 61) mutants. In summary, we report evidence for a β-catenin–mediated immune evasion in 42% of melanoma primaries overall and in 73% of those with the worst outcome. We further report evidence for an interaction between oncogenic mutations and host response to melanoma, suggesting that patient stratification will improve immunotherapeutic outcomes.

Authors

Jérémie Nsengimana, Jon Laye, Anastasia Filia, Sally O’Shea, Sathya Muralidhar, Joanna Poźniak, Alastair Droop, May Chan, Christy Walker, Louise Parkinson, Joanne Gascoyne, Tracey Mell, Minttu Polso, Rosalyn Jewell, Juliette Randerson-Moor, Graham P. Cook, D. Timothy Bishop, Julia Newton-Bishop

×

Abstract

DEP domain–containing 5 protein (DEPDC5) is a repressor of the recently recognized amino acid–sensing branch of the mTORC1 pathway. So far, its function in the brain remains largely unknown. Germline loss-of-function mutations in DEPDC5 have emerged as a major cause of familial refractory focal epilepsies, with case reports of sudden unexpected death in epilepsy (SUDEP). Remarkably, a fraction of patients also develop focal cortical dysplasia (FCD), a neurodevelopmental cortical malformation. We therefore hypothesized that a somatic second-hit mutation arising during brain development may support the focal nature of the dysplasia. Here, using postoperative human tissue, we provide the proof of concept that a biallelic 2-hit — brain somatic and germline — mutational mechanism in DEPDC5 causes focal epilepsy with FCD. We discovered a mutation gradient with a higher rate of mosaicism in the seizure-onset zone than in the surrounding epileptogenic zone. Furthermore, we demonstrate the causality of a Depdc5 brain mosaic inactivation using CRISPR-Cas9 editing and in utero electroporation in a mouse model recapitulating focal epilepsy with FCD and SUDEP-like events. We further unveil a key role of Depdc5 in shaping dendrite and spine morphology of excitatory neurons. This study reveals promising therapeutic avenues for treating drug-resistant focal epilepsies with mTORC1-targeting molecules.

Authors

Théo Ribierre, Charlotte Deleuze, Alexandre Bacq, Sara Baldassari, Elise Marsan, Mathilde Chipaux, Giuseppe Muraca, Delphine Roussel, Vincent Navarro, Eric Leguern, Richard Miles, Stéphanie Baulac

×

Abstract

Mice homozygous for the Tyr208Asn amino acid substitution in the carboxy terminus of Src homology region 2 (SH2) domain–containing phosphatase 1 (SHP-1) (referred to as Ptpn6spin mice) spontaneously develop a severe inflammatory disease resembling neutrophilic dermatosis in humans. Disease in Ptpn6spin mice is characterized by persistent footpad swelling and suppurative inflammation. Recently, in addition to IL-1α and IL-1R signaling, we demonstrated a pivotal role for several kinases such as SYK, RIPK1, and TAK1 in promoting inflammatory disease in Ptpn6spin mice. In order to identify new kinases involved in SHP-1–mediated inflammation, we took a genetic approach and discovered apoptosis signal–regulating kinases 1 and 2 (ASK1 and ASK2) as novel kinases regulating Ptpn6-mediated footpad inflammation. Double deletion of ASK1 and ASK2 abrogated cutaneous inflammatory disease in Ptpn6spin mice. This double deletion further rescued the splenomegaly and lymphomegaly caused by excessive neutrophil infiltration in Ptpn6spin mice. Mechanistically, ASK regulates Ptpn6spin-mediated disease by controlling proinflammatory signaling in the neutrophils. Collectively, the present study identifies SHP-1 and ASK signaling crosstalk as a critical regulator of IL-1α–driven inflammation and opens future avenues for finding novel drug targets to treat neutrophilic dermatosis in humans.

Authors

Sarang Tartey, Prajwal Gurung, Tejasvi Krishna Dasari, Amanda Burton, Thirumala-Devi Kanneganti

×

Abstract

Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor–null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr–/– mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution.

Authors

Olayiwola O. Oduwole, Hellevi Peltoketo, Ariel Poliandri, Laura Vengadabady, Marcin Chrusciel, Milena Doroszko, Luna Samanta, Laura Owen, Brian Keevil, Nafis A. Rahman, Ilpo T. Huhtaniemi

×

Abstract

Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice, whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with AAV8- PCSK9 and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice having lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, while splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis but also contribute to T cell-mediated inflammatory diseases in the setting of hypercholesterolemia.

Authors

Jonathan D. Proto, Amanda C. Doran, Manikandan Subramanian, Hui Wang, Mingyou Zhang, Erdi Sozen, Christina Rymond, George Kuriakose, Vivette D'Agati, Robert Winchester, Megan Sykes, Yong-Guang Yang, Ira Tabas

×

Abstract

Genetic forms of vitamin D–dependent rickets (VDDRs) are due to mutations impairing activation of vitamin D or decreasing vitamin D receptor responsiveness. Here we describe two unrelated patients with early-onset rickets, reduced serum levels of the vitamin D metabolites 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and deficient responsiveness to parent and activated forms of vitamin D. Neither patient had a mutation in any genes known to cause VDDR, however, using whole exome sequence analysis we identified a recurrent de novo missense mutation c.902T>C (p.I301T) in CYP3A4 in both subjects that alters the conformation of substrate-recognition-site 4 (SRS-4). In vitro, the mutant CYP3A4 oxidized 1,25-dihydroxyvitamin D with 10-fold greater activity than wild-type CYP3A4 and 2-fold greater activity than CYP24A1, the principal inactivator of vitamin D metabolites. As CYP3A4 mutations have not previously been linked to rickets, these findings provide new insight into vitamin D metabolism, and demonstrate that accelerated inactivation of vitamin D metabolites represents a previously undescribed mechanism for vitamin D deficiency.

Authors

Jeffrey D. Roizen, Dong Li, Lauren O'Lear, Muhammad K. Javaid, Nicholas J. Shaw, Peter R. Ebeling, Hanh H. Nguyen, Christine P. Rodda, Kenneth E. Thummel, Tom D Thacher, Hakon Hakonarson, Michael A. Levine

×

Abstract

Immune evasion and the suppression of anti-tumor responses during cancer progression are considered hallmarks of cancer and are typically attributed to tumor-derived factors. Although the molecular basis for the crosstalk between tumor and immune cells is an area of active investigation, whether host-specific germline variants can dictate immunosuppressive mechanisms has remained a challenge to address. A commonly occurring germline mutation (c.1162G>A/rs351855 G/A) in the FGFR4 (CD334) gene enhances STAT3 signaling and is associated with poor prognosis and accelerated progression of multiple cancer types. Here, using rs351855 single nucleotide polymorphism (SNP) knock-in transgenic mice and Fgfr4 knockout mice, we reveal the genotype-specific gain of immunological function of suppressing the CD8/CD4+FOXP3+CD25+ve regulatory T cell ratio in vivo. Furthermore, using knock-in transgenic mouse models for lung and breast cancers, we establish the host-specific tumor-extrinsic functions of STAT3-enhancing germline variants in impeding the tumor infiltration of CD8 T cells. Thus, STAT3-enhancing germline receptor variants contribute to immune evasion through their pleiotropic functions in immune cells.

Authors

Daniel Kogan, Alexander Grabner, Christopher Yanucil, Christian Faul, Vijay Kumar Ulaganathan

×

Abstract

Paclitaxel is among the most widely used anticancer drugs and is known to cause a dose-limiting peripheral neurotoxicity, the initiating mechanisms of which remain unknown. Here, we identified the murine solute carrier organic anion–transporting polypeptide B2 (OATP1B2) as a mediator of paclitaxel-induced neurotoxicity. Additionally, using established tests to assess acute and chronic paclitaxel-induced neurotoxicity, we found that genetic or pharmacologic knockout of OATP1B2 protected mice from mechanically induced allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes. The function of this transport system was inhibited by the tyrosine kinase inhibitor nilotinib through a noncompetitive mechanism, without compromising the anticancer properties of paclitaxel. Collectively, our findings reveal a pathway that explains the fundamental basis of paclitaxel-induced neurotoxicity, with potential implications for its therapeutic management.

Authors

Alix F. Leblanc, Jason A. Sprowl, Paola Alberti, Alessia Chiorazzi, W. David Arnold, Alice A. Gibson, Kristen W. Hong, Marissa S. Pioso, Mingqing Chen, Kevin M. Huang, Vamsi Chodisetty, Olivia Costa, Tatiana Florea, Peter de Bruijn, Ron H. Mathijssen, Raquel E. Reinbolt, Maryam B. Lustberg, Lara E. Sucheston-Campbell, Guido Cavaletti, Alex Sparreboom, Shuiying Hu

×

Abstract

T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who obtained a complete response following adoptive transfer of tumor infiltrating lymphocytes (TIL). Tumor exome sequencing surprisingly revealed less than 30 somatic mutations, including oncogenic BRAF V600E. Analysis of the specificity of TIL identified rare CD4 T cells specific for BRAFV600E and diverse CD8 T cells reactive to non-mutated self-antigens. These specificities increased in blood after TIL transfer and persisted long term suggesting they contributed to the effective antitumor immune response. Gene transfer of the BRAFV600E-specific T cell receptor (TCR) conferred recognition of class II MHC positive cells expressing the BRAF mutation. Therapy with TCR engineered BRAFV600E-specific CD4+ T cells may have direct antitumor effects and augment CD8+ T cell responses to self and/or mutated tumor antigens in patients with BRAF mutated cancers.

Authors

Joshua R. Veatch, Sylvia M. Lee, Matthew Fitzgibbon, I-Ting Chow, Brenda Jesernig, Thomas Schmitt, Ying Ying Kong, Julia Kargl, A. McGarry Houghton, John A. Thompson, Martin McIntosh, William W. Kwok, Stanley R. Riddell

×

No posts were found with this tag.