Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling
Jane T. Seto, … , Nan Yang, Kathryn N. North
Jane T. Seto, … , Nan Yang, Kathryn N. North
Published October 1, 2013; First published September 16, 2013
Citation Information: J Clin Invest. 2013;123(10):4255-4263. https://doi.org/10.1172/JCI67691.
View: Text | PDF
Categories: Research Article Muscle biology

ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling

  • Text
  • PDF
Abstract

α-Actinin-3 deficiency occurs in approximately 16% of the global population due to homozygosity for a common nonsense polymorphism in the ACTN3 gene. Loss of α-actinin-3 is associated with reduced power and enhanced endurance capacity in elite athletes and nonathletes due to “slowing” of the metabolic and physiological properties of fast fibers. Here, we have shown that α-actinin-3 deficiency results in increased calcineurin activity in mouse and human skeletal muscle and enhanced adaptive response to endurance training. α-Actinin-2, which is differentially expressed in α-actinin-3–deficient muscle, has higher binding affinity for calsarcin-2, a key inhibitor of calcineurin activation. We have further demonstrated that α-actinin-2 competes with calcineurin for binding to calsarcin-2, resulting in enhanced calcineurin signaling and reprogramming of the metabolic phenotype of fast muscle fibers. Our data provide a mechanistic explanation for the effects of the ACTN3 genotype on skeletal muscle performance in elite athletes and on adaptation to changing physical demands in the general population. In addition, we have demonstrated that the sarcomeric α-actinins play a role in the regulation of calcineurin signaling.

Authors

Jane T. Seto, Kate G.R. Quinlan, Monkol Lek, Xi Fiona Zheng, Fleur Garton, Daniel G. MacArthur, Marshall W. Hogarth, Peter J. Houweling, Paul Gregorevic, Nigel Turner, Gregory J. Cooney, Nan Yang, Kathryn N. North

×

Full Text PDF | Download (2.10 MB)

Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts